Preliminaries

Adversarial examples: an input, generated by some adversary, which is visually indistinguishable from an example from the natural distribution, but is able to mislead the target classifier.

Famous "panda-gibbon" illustration of adversarial examples

More formally, the set of adversarial examples w.r.t. seed example $\{\boldsymbol{x}_0,y_0\}$, classifier $f_{\theta}(\cdot)$ and ℓ_{∞} perturbations is defined as

$$\{ \boldsymbol{x} \in \mathcal{X} : \|\boldsymbol{x} - \boldsymbol{x}_0\|_{\infty} \le \epsilon \text{ and } \underset{j}{\operatorname{argmax}} [f_{\theta}(\boldsymbol{x})]_j \neq y_0 \}.$$

Defenses with certified robustness (Wong & Zico, 2018)

- Construct a convex outer bound on the "adversarial polytope"
- Develop robust certificate for testing given inputs
- Propose training methods to optimize for certifiable robustness

$$\underset{\theta}{\text{minimize}} \ \frac{1}{N} \sum_{i=1}^{N} \mathcal{L} \bigg(-J_{\epsilon} \big(\boldsymbol{x}_{i}, g_{\theta} (\boldsymbol{e}_{y_{i}} \cdot \boldsymbol{1}^{\top} - \boldsymbol{I}) \big), y_{i} \bigg),$$

where $-J_{\epsilon}(\boldsymbol{x}_i, g_{\theta}(\boldsymbol{e}_{y_i} \cdot \boldsymbol{1}^{\top} - \boldsymbol{I}))$ is a guaranteed lower bound.

Pairwise robust heatmap of certified robust classifier

- \blacktriangleright (i,j)-th entry is a robustness bound of that seed-target pair.
- ► The vulnerability to transformations differs among class pairs.

Motivations

Overall robustness: designed for preventing seed examples in any class from being misclassified as any other class.

- Existing defensive methods focus on such robustness definition.
- May not be the appropriate criteria for security applications.
- Only certain kinds of adversarial misclassifications pose meaningful threats that provide value for potential adversaries.

Illustration of our motivation in the application of autonomous vehicles

Cost-Sensitive Robustness

- Use a **cost matrix** C to encode the cost (i.e., potential harm to model deployer) of different adversarial transformations.
- Binary cost matrix
 - \triangleright An example x in class j is said to be certified cost-sensitive robust, if $J_{\epsilon}(\boldsymbol{x}, g_{\theta}(\boldsymbol{e}_{j} - \boldsymbol{e}_{j'})) \geq 0$ for all $j' \in \Omega_{j}$.
 - Define **cost-sensitive robust error** as

#{examples not guaranteed to be cost-sensitive robust} #{candidate seed examples with non-zero cost}

- Real-valued cost matrix
 - \triangleright The cost of an adversarial example x in class j is defined as the sum of all $C_{jj'}$ such that $J_{\epsilon}(\boldsymbol{x}, g_{\theta}(\boldsymbol{e}_{j} - \boldsymbol{e}_{j'})) < 0$.
 - Define **robust cost** as averaged cost of adversarial examples.
- General cost-sensitive training method

$$\min_{\theta} \frac{1}{N} \sum_{i \in [N]} \mathcal{L}(f_{\theta}(\boldsymbol{x}_{i}), y_{i}) \\
+ \alpha \sum_{j \in [m]} \frac{\delta_{j}}{N_{j}} \sum_{i|y_{i}=j} \log \left(1 + \sum_{j' \in \Omega_{j}} C_{jj'} \cdot \exp\left(-J_{\epsilon}(\boldsymbol{x}_{i}, g_{\theta}(\boldsymbol{e}_{j} - \boldsymbol{e}_{j'}))\right)\right)$$

- Optimize for both standard classification accuracy and certified cost-sensitive robustness, and use α to balance them.
- Can be solved efficiently using gradient-based algorithms.

Experimental Results

MNIST

(a) single seed class

(c) small-large

(d) large-small

► CIFAR-10

Comparison results against ℓ_{∞} perturbations with $\epsilon = 2/255$

Task Description		Classification Error		Robust Error	
		baseline	ours	baseline	ours
single pair	(frog, bird)	31.80%	27.88%	19.90%	1.20%
	(cat, plane)	31.80%	28.63%	9.30%	2.60%
single seed	dog	31.80%	30.69%	57.20%	28.90%
	truck	31.80%	31.55%	35.60%	15.40%
single target	deer	31.80%	26.69%	16.99%	3.77%
	ship	31.80%	24.80%	9.42%	3.06%
multiple	A-V	31.80%	26.65%	16.67%	7.42%
	V-A	31.80%	27.60%	12.07%	8.00%

